MTH 520/622 Midterm Solutions

1. Consider the groups $\operatorname{Möb}(\mathbb{H})=\{m \in \operatorname{Möb}(\hat{\mathbb{C}}): m(\mathbb{H})=\mathbb{H}\}$ and $\operatorname{Möb}^{+}(\mathbb{H})=\left\{m \in \operatorname{Möb}^{+}(\hat{\mathbb{C}}): m(\mathbb{H})=\mathbb{H}\right\}$.
(a) Show that Möb ${ }^{+}(\mathbb{H})$ acts transitively on \mathbb{H}.
(b) Show that Möb ${ }^{+}(\mathbb{H})$ acts transitively on the set of hyperbolic lines in \mathbb{H}.
(c) Show that $\operatorname{Möb}(\mathbb{H})$ acts triply transitively on the set of triples of distinct points in $\overline{\mathbb{R}}$. Does this property also hold true for the action of $\mathrm{Möb}^{+}(\mathbb{H})$? Why or why not?

Solution. (a) Consider a pair z_{1}, z_{2} of distinct point in \mathbb{H}. Pick two other points $w_{1}, w_{2} \in \mathbb{H}$ such that $d_{\mathbb{H}}\left(z_{1}, w_{1}\right)=d_{\mathbb{H}}\left(z_{2}, w_{2}\right)$. Since $\mathrm{Möb}^{+}(\mathbb{H})$ acts transitively on such equidistant pairs of points preserving order, there exists $m \in \operatorname{Möb}^{+}(\mathbb{H})$ such that $m\left(z_{1}\right)=z_{2}$.
(b) It suffices to show that every hyperbolic line L can be mapped to the imaginary axis L^{\prime} by some element $m \in \mathrm{Möb}^{+}(\mathbb{H})$. Consider points $z_{1}, z_{2} \in L$, and let $d_{\mathbb{H}}\left(z_{1}, z_{2}\right)=d$. Then there is an $m \in \operatorname{Möb}^{+}(\mathbb{H})$ such that $m\left(z_{1}\right)=i$ and $m\left(z_{2}\right)=e^{d} i$. Since any two distinct points in \mathbb{H} have a unique geodesic joining them, it follows that $m(L)=L^{\prime}$.
(c) Consider a triple r_{1}, r_{2}, r_{3} of points distinct in $\overline{\mathbb{R}}$. It suffices to show that there exists $m \in \operatorname{Möb}(\mathbb{H})$ that maps this triple to the triple $0,1, \infty$. But there is a unique map $m \in \operatorname{Möb}(\mathbb{H})$ (up to normalization) with this property, namely

$$
m(z)=\left[z, r_{3} ; r_{2}, r_{1}\right]=\frac{\left(z-r_{1}\right)\left(r_{2}-r_{3}\right)}{\left(z-r_{3}\right)\left(r_{2}-r_{1}\right)}
$$

Moreover, $m \in \operatorname{Möb}^{+}(\mathbb{H})$ if, and only if $\operatorname{Det}(m)>0$, that is, $r_{1}<r_{2}<$ r_{3}. Hence, it follows that the action of $\operatorname{Möb}^{+}(\mathbb{H})$ on $\overline{\mathbb{R}}$ is not triply transitive. In particular, there exists no $m \in \operatorname{Möb}^{+}(\mathbb{H})$ that maps the triple $0,1, \infty$ to the triple $0,-1, \infty$.
2. Consider an $m \in \mathrm{Möb}^{+}(\mathbb{H})$ that is nontrivial. Use the classification of isometries in $\operatorname{Möb}(\hat{\mathbb{C}})$ to prove the following.
(a) m is parabolic if, and only if m has one fixed point in $\overline{\mathbb{R}}$. Furthermore, m is conjugate in $\operatorname{Möb}(\mathbb{H})$ to the map $q(z)=z+1$.
(b) m is elliptic if, and only if m has one fixed point in \mathbb{H}. Furthermore, m is conjugate in $\operatorname{Möb}^{+}(\mathbb{H})$ to a rotation by θ (i.e a map of the form $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, for some $\left.\theta \in \mathbb{R}\right)$.
(c) m is loxodromic if, and only if m has two fixed points in $\overline{\mathbb{R}}$. Furthermore, m is conjugate in $\operatorname{Möb}^{+}(\mathbb{H})$ to the map $q(z)=k z$, for some $k>0$.
(d) For each of the three types of isometries, derive conditions equivalent to those given in 2(a) - (c) in terms of $\operatorname{Trace}^{2}(m)$.

Solution. Consider an $m \in \operatorname{Möb}^{+}(\mathbb{H})$ given by $m(z)=\frac{a z+b}{c z+d}$. The equation $m(z)=z$ yields the quadratic equation

$$
c z^{2}+(d-a) z-b=0
$$

whose discriminant D is given by

$$
\begin{equation*}
D=(a+d)^{2}-4=\operatorname{Trace}^{2}(m)-4 \tag{*}
\end{equation*}
$$

By the classification of Möbius transformation in $\hat{\mathbb{C}}$, we know that a Möbius transformation $m \in \operatorname{Möb}(\hat{\mathbb{C}})$ that is not the identity is:
(i) parabolic, if it has only one fixed point in $\hat{\mathbb{C}}$ and is conjugate to the map $m^{\prime}(z)=z+1$. Equivalently, m is parabolic if, and only if $\operatorname{Trace}^{2}(m)=4$.
(ii) elliptic, if it has two fixed points in $\hat{\mathbb{C}}$ and is conjugate to the map $m^{\prime}(z)=a z$, where $|a|=1$, that is, $a=e^{i 2 \theta}$, for some $\theta \in[0, \pi)$. Equivalently, m is elliptic if, and only if $\operatorname{Trace}^{2}(m) \in[0,4)$.
(iii) loxodromic, if it has two fixed points in $\hat{\mathbb{C}}$ and is conjugate to the map $m^{\prime}(z)=a z$, where $|a| \neq 1$, that is, $a=r e^{i 2 \theta}$, for some $r>0$ and $\theta \in[0, \pi)$. Equivalently, m is loxodromic if, and only if either $\operatorname{Im}\left(\operatorname{Trace}^{2}(m)\right) \neq 0$ or $\operatorname{Trace}^{2}(m) \in(-\infty, 0) \cup(4, \infty)$.

We will now apply the results in (i)-(iii) and $\left({ }^{*}\right)$ to obtain a solution to the problem.
(a) An $m \in \operatorname{Möb}^{+}(\mathbb{H})$ is parabolic if, and only if $\operatorname{Trace}^{2}(m)=4$ (i.e $D=0$). Such an m will have a unique fixed point in $\overline{\mathbb{R}}$ given by $(a-d) / 2$. Moreover, using the triple transitivity of Möb (\mathbb{H}) in $\overline{\mathbb{R}}$ (shown
in $1(\mathrm{c})$ above), we can conjugate m to have the form $m(z)=z+1$ (why?), whose unique fixed point is ∞.

It is interesting to note that parabolic transformation m also preserves any horocircle that is tangential to its unique fixed point in $\overline{\mathbb{R}}$ (why?). In particular, for the map $m(z)=z+1$, these horocircles are circles in $\hat{\mathbb{C}}$ which are unions of horizontal lines with the point at ∞.
(b) An $m \in \operatorname{Möb}^{+}(\mathbb{H})$ is elliptic if, and only if $\operatorname{Trace}^{2}(m)<4$ (i.e $D<0$). Such an m will have a unique fixed point w in \mathbb{H} given by $w=\frac{1}{2}(a-d+\sqrt{D} i)$, and m is a rotation by some angle θ about this point w. In particular, if we take the fixed point of m to be at $w=i$ (why? Give an example of such a map), then by a direct calculation, we see that $a=d$ and $b=-c$, and so m has the form

$$
m(z)=\frac{a z+b}{-b z+a} .
$$

We normalize by dividing each coefficient on the right by $\sqrt{a^{2}+b^{2}}$ to obtain the form $m(z)=e^{i \theta} z$, where $\theta=\cos ^{-1}\left(a / \sqrt{a^{2}+b^{2}}\right)$, as desired in the problem.
The geometry of an elliptic map is more apparent in the Poincaré disk model, if we consider the Cayley transformation $C: \mathbb{H} \rightarrow \mathbb{D}$. As $C \in \operatorname{Möb}^{+}(\hat{\mathbb{C}})$, it follows that $C \circ m \in \operatorname{Isom}^{+}(\mathbb{D})$ is a rotation of \mathbb{D} by θ.
(c) An $m \in \operatorname{Möb}^{+}(\mathbb{H})$ is loxodromic if, and only if $\operatorname{Trace}^{2}(m)>4$ (i.e $D>0)$. Such an m will have two fixed points in $\overline{\mathbb{R}}$ given by $\frac{1}{2}(a-d \pm$ $\sqrt{D})$. Furthermore, m preserves the unique geodesic L in \mathbb{H} joining these points (also called the axis of the loxodromic transformation m). In fact, m is a "glide reflection" (i.e the composition of a reflection about a line with a translation along the line) about L (why? Give an example of such a map).
Suppose that x and $y(x<y)$ are the two fixed points of m. Using the triple transitivity of $\mathrm{Möb}^{+}(\mathbb{H})$ on ordered triples in $\overline{\mathbb{R}}$, we may assume up to conjugacy that $x=0$ and $y=\infty$, so that the axis of m is the imaginary axis (why?). Hence, up to conjugacy, m has the form $m(z)=\lambda z$.
3. If $\gamma:[a, b] \rightarrow \mathbb{H}$ is a piecewise C^{1} path, then show that $\ell_{\mathbb{H}}(\gamma)<\infty$.

Solution. Consider a partition of $[a, b]$ into closed subintervals I_{k}, $1 \leq k \leq r$ such that $\left.\gamma^{\prime}\right|_{I_{k}}$ is continuous. By the extreme value theorem, for $1 \leq k \leq r$, there exists M_{k} such that

$$
\left|\gamma^{\prime}(x)\right| \leq M_{k}, \text { for } x \in I_{k} .
$$

Let $M=\max _{k} M_{k}$. Now using the fact that there exists $N>0$ such that $\operatorname{Im}(\gamma(t))^{k} \geq N$, for all $t \in[a, b]$ (why?), we have

$$
\ell_{\mathbb{H}}(\gamma)=\int_{a}^{b} \frac{1}{\operatorname{Im}(\gamma(t))}\left|\gamma^{\prime}(t)\right| d t \leq \frac{M}{N}(b-a) .
$$

4. (Bonus) Show that the subspace topology induced on \mathbb{H} by the metric topology on \mathbb{R}^{2} is identical to the metric topology on $\left(\mathbb{H}, d_{\mathbb{H}}\right)$.
Solution. This follows from assertion 3.3(v) of the lesson plan, which was discussed in class. Fill in the details.
