MTH 520/622 Midterm Solutions

- 1. Consider the groups $\operatorname{M\"ob}(\mathbb{H}) = \{m \in \operatorname{M\"ob}(\widehat{\mathbb{C}}) : m(\mathbb{H}) = \mathbb{H}\}$ and $\operatorname{M\"ob}^+(\mathbb{H}) = \{m \in \operatorname{M\"ob}^+(\widehat{\mathbb{C}}) : m(\mathbb{H}) = \mathbb{H}\}.$
 - (a) Show that $M\ddot{o}b^+(\mathbb{H})$ acts transitively on \mathbb{H} .
 - (b) Show that Möb⁺(ℍ) acts transitively on the set of hyperbolic lines in ℍ.
 - (c) Show that Möb(ℍ) acts triply transitively on the set of triples of distinct points in ℝ. Does this property also hold true for the action of Möb⁺(ℍ)? Why or why not?

Solution. (a) Consider a pair z_1, z_2 of distinct point in \mathbb{H} . Pick two other points $w_1, w_2 \in \mathbb{H}$ such that $d_{\mathbb{H}}(z_1, w_1) = d_{\mathbb{H}}(z_2, w_2)$. Since $\mathrm{M\"ob}^+(\mathbb{H})$ acts transitively on such equidistant pairs of points preserving order, there exists $m \in \mathrm{M\"ob}^+(\mathbb{H})$ such that $m(z_1) = z_2$.

(b) It suffices to show that every hyperbolic line L can be mapped to the imaginary axis L' by some element $m \in \text{M\"ob}^+(\mathbb{H})$. Consider points $z_1, z_2 \in L$, and let $d_{\mathbb{H}}(z_1, z_2) = d$. Then there is an $m \in \text{M\"ob}^+(\mathbb{H})$ such that $m(z_1) = i$ and $m(z_2) = e^d i$. Since any two distinct points in \mathbb{H} have a unique geodesic joining them, it follows that m(L) = L'.

(c) Consider a triple r_1, r_2, r_3 of points distinct in \mathbb{R} . It suffices to show that there exists $m \in \text{M\"ob}(\mathbb{H})$ that maps this triple to the triple $0, 1, \infty$. But there is a unique map $m \in \text{M\"ob}(\mathbb{H})$ (up to normalization) with this property, namely

$$m(z) = [z, r_3; r_2, r_1] = \frac{(z - r_1)(r_2 - r_3)}{(z - r_3)(r_2 - r_1)}$$

Moreover, $m \in \text{M\"ob}^+(\mathbb{H})$ if, and only if Det(m) > 0, that is, $r_1 < r_2 < r_3$. Hence, it follows that the action of $\text{M\"ob}^+(\mathbb{H})$ on \mathbb{R} is not triply transitive. In particular, there exists no $m \in \text{M\"ob}^+(\mathbb{H})$ that maps the triple $0, 1, \infty$ to the triple $0, -1, \infty$.

- 2. Consider an $m \in \text{M\"ob}^+(\mathbb{H})$ that is nontrivial. Use the classification of isometries in $\text{M\"ob}(\hat{\mathbb{C}})$ to prove the following.
 - (a) *m* is parabolic if, and only if *m* has one fixed point in \mathbb{R} . Furthermore, *m* is conjugate in Möb(\mathbb{H}) to the map q(z) = z + 1.

- (b) *m* is elliptic if, and only if *m* has one fixed point in \mathbb{H} . Furthermore, *m* is conjugate in $\mathrm{M\ddot{o}b^{+}(\mathbb{H})}$ to a rotation by θ (i.e a map of the form $\begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}$, for some $\theta \in \mathbb{R}$).
- (c) m is loxodromic if, and only if m has two fixed points in \mathbb{R} . Furthermore, m is conjugate in $\text{M\"ob}^+(\mathbb{H})$ to the map q(z) = kz, for some k > 0.
- (d) For each of the three types of isometries, derive conditions equivalent to those given in 2(a) (c) in terms of $\text{Trace}^2(m)$.

Solution. Consider an $m \in \text{M\"ob}^+(\mathbb{H})$ given by $m(z) = \frac{az+b}{cz+d}$. The equation m(z) = z yields the quadratic equation

$$cz^2 + (d-a)z - b = 0,$$

whose discriminant D is given by

$$D = (a+d)^2 - 4 = \text{Trace}^2(m) - 4.$$
 (*)

By the classification of Möbius transformation in $\hat{\mathbb{C}}$, we know that a Möbius transformation $m \in \text{Möb}(\hat{\mathbb{C}})$ that is not the identity is:

- (i) *parabolic*, if it has only one fixed point in $\hat{\mathbb{C}}$ and is conjugate to the map m'(z) = z + 1. Equivalently, m is parabolic if, and only if $\text{Trace}^2(m) = 4$.
- (ii) *elliptic*, if it has two fixed points in $\hat{\mathbb{C}}$ and is conjugate to the map m'(z) = az, where |a| = 1, that is, $a = e^{i2\theta}$, for some $\theta \in [0, \pi)$. Equivalently, m is elliptic if, and only if $\operatorname{Trace}^2(m) \in [0, 4)$.
- (iii) *loxodromic*, if it has two fixed points in \mathbb{C} and is conjugate to the map m'(z) = az, where $|a| \neq 1$, that is, $a = re^{i2\theta}$, for some r > 0 and $\theta \in [0, \pi)$. Equivalently, m is loxodromic if, and only if either $\operatorname{Im}(\operatorname{Trace}^2(m)) \neq 0$ or $\operatorname{Trace}^2(m) \in (-\infty, 0) \cup (4, \infty)$.

We will now apply the results in (i)-(iii) and (*) to obtain a solution to the problem.

(a) An $m \in \text{M\"ob}^+(\mathbb{H})$ is parabolic if, and only if $\text{Trace}^2(m) = 4$ (i.e D = 0). Such an m will have a unique fixed point in \mathbb{R} given by (a-d)/2. Moreover, using the triple transitivity of $\text{M\"ob}(\mathbb{H})$ in \mathbb{R} (shown

in 1(c) above), we can conjugate m to have the form m(z) = z + 1 (why?), whose unique fixed point is ∞ .

It is interesting to note that parabolic transformation m also preserves any horocircle that is tangential to its unique fixed point in \mathbb{R} (why?). In particular, for the map m(z) = z + 1, these horocircles are circles in \mathbb{C} which are unions of horizontal lines with the point at ∞ .

(b) An $m \in \text{M\"ob}^+(\mathbb{H})$ is elliptic if, and only if $\text{Trace}^2(m) < 4$ (i.e D < 0). Such an m will have a unique fixed point w in \mathbb{H} given by $w = \frac{1}{2}(a - d + \sqrt{D}i)$, and m is a rotation by some angle θ about this point w. In particular, if we take the fixed point of m to be at w = i (why? Give an example of such a map), then by a direct calculation, we see that a = d and b = -c, and so m has the form

$$m(z) = \frac{az+b}{-bz+a}$$

We normalize by dividing each coefficient on the right by $\sqrt{a^2 + b^2}$ to obtain the form $m(z) = e^{i\theta}z$, where $\theta = \cos^{-1}(a/\sqrt{a^2 + b^2})$, as desired in the problem.

The geometry of an elliptic map is more apparent in the Poincaré disk model, if we consider the Cayley transformation $C : \mathbb{H} \to \mathbb{D}$. As $C \in \text{M\"ob}^+(\hat{\mathbb{C}})$, it follows that $C \circ m \in \text{Isom}^+(\mathbb{D})$ is a rotation of \mathbb{D} by θ .

(c) An $m \in \text{M\"ob}^+(\mathbb{H})$ is loxodromic if, and only if $\text{Trace}^2(m) > 4$ (i.e D > 0). Such an m will have two fixed points in \mathbb{R} given by $\frac{1}{2}(a - d \pm \sqrt{D})$. Furthermore, m preserves the unique geodesic L in \mathbb{H} joining these points (also called the *axis* of the loxodromic transformation m). In fact, m is a "glide reflection" (i.e the composition of a reflection about a line with a translation along the line) about L (why? Give an example of such a map).

Suppose that x and $y \ (x < y)$ are the two fixed points of m. Using the triple transitivity of $\text{M\"ob}^+(\mathbb{H})$ on ordered triples in \mathbb{R} , we may assume up to conjugacy that x = 0 and $y = \infty$, so that the axis of m is the imaginary axis (why?). Hence, up to conjugacy, m has the form $m(z) = \lambda z$.

3. If $\gamma : [a, b] \to \mathbb{H}$ is a piecewise C^1 path, then show that $\ell_{\mathbb{H}}(\gamma) < \infty$.

Solution. Consider a partition of [a, b] into closed subintervals I_k , $1 \le k \le r$ such that $\gamma'|_{I_k}$ is continuous. By the extreme value theorem, for $1 \le k \le r$, there exists M_k such that

$$|\gamma'(x)| \leq M_k$$
, for $x \in I_k$.

Let $M = \max_{k} M_{k}$. Now using the fact that there exists N > 0 such that $\operatorname{Im}(\gamma(t)) \geq N$, for all $t \in [a, b]$ (why?), we have

$$\ell_{\mathbb{H}}(\gamma) = \int_{a}^{b} \frac{1}{\operatorname{Im}(\gamma(t))} |\gamma'(t)| dt \le \frac{M}{N}(b-a).$$

4. (Bonus) Show that the subspace topology induced on \mathbb{H} by the metric topology on \mathbb{R}^2 is identical to the metric topology on $(\mathbb{H}, d_{\mathbb{H}})$.

Solution. This follows from assertion 3.3(v) of the lesson plan, which was discussed in class. Fill in the details.